
 ECS 289M Lecture 24

May 26, 2006

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Computer Virus

• Program that inserts itself into one or more files and

performs some action

– Insertion phase is inserting itself into file

– Execution phase is performing some (possibly null) action

• Insertion phase must be present

– Need not always be executed

– Lehigh virus inserted itself into boot file only if boot file not

infected

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Pseudocode

beginvirus:

if spread-condition then begin

for some set of target files do begin

if target is not infected then begin

determine where to place virus instructions

copy instructions from beginvirus to endvirus

into target

alter target to execute added instructions

end;

end;

end;

perform some action(s)

goto beginning of infected program

endvirus:

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Trojan Horse Or Not?

• Yes

– Overt action = infected program’s actions

– Covert action = virus’ actions (infect, execute)

• No

– Overt purpose = virus’ actions (infect, execute)

– Covert purpose = none

• Semantic, philosophical differences

– Defenses against Trojan horse also inhibit computer viruses

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Computer Worms

• A program that copies itself from one computer to

another

• Origins: distributed computations

– Schoch and Hupp: animations, broadcast messages

– Segment: part of program copied onto workstation

– Segment processes data, communicates with worm’s

controller

– Any activity on workstation caused segment to shut down

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Example: Internet Worm of

1988
• Targeted Berkeley, Sun UNIX systems

– Used virus-like attack to inject instructions into running
program and run them

– To recover, had to disconnect system from Internet and
reboot

– To prevent re-infection, several critical programs had to be
patched, recompiled, and reinstalled

• Analysts had to disassemble it to uncover function

• Disabled several thousand systems in 6 or so hours

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Example: Christmas Worm

• Distributed in 1987, designed for IBM networks

• Electronic letter instructing recipient to save it and run
it as a program
– Drew Christmas tree, printed “Merry Christmas!”

– Also checked address book, list of previously received email
and sent copies to each address

• Shut down several IBM networks

• Really, a macro worm
– Written in a command language that was interpreted

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Theory of Detection

• Can we write a program to detect all

computer viruses precisely, without

error?

• YES!!!

– What follows is from Dr. Alan Soloman (Dr.

Solly to most folks)

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

The Perfect Antivirus

I shall now give you, free of charge, an antivirus that if
used correctly, detects all past, present and future
viruses, never gives a false alarm, and has a zero cost.
Skeptical? Then watch carefully ...

type P1.BAT

Echo %1 is infected by a virus!!!

You'll agree, I think, that P1.BAT will detect all past
present and future viruses. That alone meets the
“mathematically impossible” task!

But, I hear you thinking, aren’t there rather a lot of false
alarms? Well, you didn't say you wanted a low false
alarm rate....

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Not Good Enough

OK, OK. I'm used to projects where the user

specification changes in the middle. Never

mind. I can deal with the false alarms ...

P2.BAT

Echo %1 is NOT infected by a virus!!!

You’ll agree, I think, that P2.BAT will never,

ever, tell you that you have a virus when you

don’t. Of course, it has a pretty poor detection

rate. I admit that.

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

So Here It Is!

But I can fix it. See here ...

PERFECT.BAT

Echo Is %1 a virus? (Y/N)

If the user types ‘Y’, you run P1. If the user
types ‘N’, you run P2.

Remember what I promised you? An antivirus
that if used correctly, detects all past, present
and future viruses, never gives a false alarm,
and has a zero cost.

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Moral of All This?

All very amusing, but what can we learn from

this?

1. If something is superb at detecting viruses, it's no

use if it gives a lot of false alarms.

2. Anything that relies on the user to make a correct

decision, on matters that he is not likely to be able

to decide about, is useless.

3. You can receive something that is exactly what

the salesman promised to deliver, and it's

nevertheless useless.

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

OK, Back to Math …

• Is there a single algorithm that detects

computer viruses precisely?

– Need to define viruses in terms of Turing

machines

– See if we can map the halting problem into

that algorithm

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Step 1: Virus

• T Turing machine
– sv distinguished state of T

• V sequence of symbols on machine tape

• For every v ! V, when T lies at the beginning
of v in tape square k, suppose that after some
number of instructions are executed, a
sequence v! ! V lies on the tape beginning at
location k!, where either k+|v|!k! or k!+|v|!k.

• (T, V) is a viral set and the elements of V are
computer viruses.

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

In A Picture

• Virus v can copy another element of V either

before or after itself on the tape

– May not overwrite itself

– Before at left, after at right

v v´

k k + j k´ k´+ j

v´ v

k´ k´+ j k k + j

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Overview of Argument

• Arbitrary T, sequence S of symbols on tape

• Construct second Turing machine T", tape V,
such that when T halts on S, V and T" create
copy of S on tape

• T" replicates S iff T halts on S

– Recall replicating program is a computer virus

• So there is a procedure deciding if (T", V) is a
viral set iff there is a procedure that
determines if T halts on S
– That is, if the halting problem is solvable

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Theorem

• It is undecidable whether an arbitrary
program contains a computer virus

• Proof:
– T defines Turing machine

– V defines sequence of tape symbols

– A, B ! M (tape symbols)

– qi ! K for i " 1 (states)

– a, b, i, j non-negative integers

– #: K$M % K$M${L,R,–} (transition function; – is no
motion)

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Proof

• Abbreviation for #:

#(qa, y) = (qa, y, L) when y !"A

means all definitions of d where:

– first element (current state) is qa

– second element (tape symbol) is anything

other than A

– third element is L (left head motion)

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Abbreviations

• LS(qa, x, qb)
– In state qa, move head left until square with

symbol x

– Enter state qb

– Head remains over symbol x

• RS(qa, x, qb)
– In state qa, move head right until square with

symbol x

– Enter state qb

– Head remains over symbol x

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Abbreviations

• LS(qa, x, qb)

#(qa, x) = (qb, x, –)

#(qa, y) = (qa, y, L) when y !"x

• RS(qa, x, qb)

#(qa, x) = (qb, x, –)

#(qa, y) = (qa, y, R) when y !"x

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Abbreviation

• COPY(qa, x, y, z, qb)

– In state qa, move head right until square

with symbol x

– Copy symbols on tape until next square

with symbol y

– Place copy after first symbol z following y

– Enter state qb

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Idea of Actions

• Put marker (A) over initial symbol

• Move to where to write it (B)

• Write it and mark location of next
symbol (move B down one)

• Go back and overwrite marker A with
symbol

• Iterate until V copied

– Note: A, B symbols that do not occur in V

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Abbreviation

RS(qa, x, qa+i)

#(qa+i, x) = (qa+i+1, A, –)

– Move head over x, replace with marker A

RS(qa+i+1, y, qa+i+2)

RS(qa+i+2, z, qa+i+3)
– Skip to where segment is to be copied

#(qa+i+3, z) = (qa+i+4, z, R)

#(qa+i+4, u) = (qa+i+5, B,–) for any u ! M

– Mark next square with B

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

More

• LS(qa+i+5, A, qa+i+6)

• #(qa+i+6, A) = (qa+i+7, x, –)

– Put x (clobbered by A) back

• #(qa+i+7, sj) = (qa+i+5j+10, A, R) for sj !"y

• #(qa+i+7, y) = (qa+i+8, y, R)

– Overwrite symbol being copied (if last, enter new
state)

• RS(qa+i+5j+10, B, qa+i+5j+11)

• #(qa+i+5j+11, B) = (qa+i+5j+12, sj, R)

– Make copy of symbol

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

More

#(qa+i+5j+12, u) = (qa+i+5j+13, B, –)

– Mark where next symbol goes

LS(qa+i+5j+13, A, qa+i+5j+14)

#(qa+i+5j+14, A)= (qa+i+7, sj, R)

– Copy back symbol

RS(qa+i+8, B, qa+i+9)

#(qa+i+9, B) = (qb, y, –)

– Write terminal symbol

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Construction of T", V"

• Symbols of T": M" = M u { A, B, C, D }

• States of T" :
K" = K u { qa, qb, qc, qd, qe, qf, qg, qh, qH }

• qa initial state of T"

• qH halting state of T"

• SIMULATE(qf, T, qh)
– Simulate execution of T on tape with head at

current position, qf, qh in K" correspond to initial,
terminal state of T

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

T"

• Let V" = (A, B, V, C, D).

• Idea: copy V after D, run T on V, and if it finishes,

copy V over results

• Then if T halts, (T", V) a viral set by definition

A B V C D B V C ...

Head

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Running T in T"

#(qa, A) = (qb, A, –)

#(qa, y) = (qH, y, –) for y !"A

– Beginning, halting transitions

COPY(qb, B, C, D, qc)
– Copy V after D

LS(qc, A, qd)

RS(qd, D, qe)

#(qe, D) = (qe, D, R)

– Position head so T executes copy of V

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Running T in T"

#(qe, B) = (qf, B, R)

– Position head after B at beginning of copy of V

SIMULATE(qf, T, qh)
– T runs on copy of V (execution phase)

LS(qh, A, qg)
– T finishes; go to beginning of T" tape

COPY(qg, A, D, D, qH)
– Copy initial contents of V over results of running T

on V (reproduction phase)

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Analysis

• If T halts on V, definition of “viral set”

and “virus” satisfied

• If T never halts on V, V never recopied,

and definition never satisfied

• Establishes result

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

More General Result

• Theorem: It is undecidable whether an

arbitrary program contains malicious

logic

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Basics of Assurance

• Trust

• Problems from lack of assurance

• Types of assurance

• Life cycle and assurance

• Waterfall life cycle model

• Other life cycle models

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

Trust

• Trustworthy entity has sufficient credible
evidence leading one to believe that the
system will meet a set of requirements

• Trust is a measure of trustworthiness relying
on the evidence

• Assurance is confidence that an entity meets
its security requirements based on evidence
provided by applying assurance techniques

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

Relationships

Policy

Mechanisms

Assurance

Statement of requirements that explicitly defines
the security expectations of the mechanism(s)

Provides justification that the mechanism meets policy
through assurance evidence and approvals based on
evidence

Executable entities that are designed and implemented
to meet the requirements of the policy

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 35

Problem Sources

1. Requirements definitions, omissions, and mistakes

2. System design flaws

3. Hardware implementation flaws, such as wiring and chip flaws

4. Software implementation errors, program bugs, and compiler bugs

5. System use and operation errors and inadvertent mistakes

6. Willful system misuse

7. Hardware, communication, or other equipment malfunction

8. Environmental problems, natural causes, and acts of God

9. Evolution, maintenance, faulty upgrades, and decommissions

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 36

Examples

• Challenger explosion
– Sensors removed from booster rockets to meet accelerated

launch schedule

• Deaths from faulty radiation therapy system
– Hardware safety interlock removed

– Flaws in software design

• Bell V22 Osprey crashes
– Failure to correct for malfunctioning components; two faulty

ones could outvote a third

• Intel 486 chip
– Bug in trigonometric functions

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 37

Role of Requirements

• Requirements are statements of goals
that must be met

– Vary from high-level, generic issues to low-
level, concrete issues

• Security objectives are high-level
security issues

• Security requirements are specific,
concrete issues

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 38

Types of Assurance

• Policy assurance is evidence establishing security

requirements in policy is complete, consistent,

technically sound

• Design assurance is evidence establishing design

sufficient to meet requirements of security policy

• Implementation assurance is evidence establishing

implementation consistent with security requirements

of security policy

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 39

Types of Assurance

• Operational assurance is evidence

establishing system sustains the

security policy requirements during

installation, configuration, and day-to-

day operation

– Also called administrative assurance

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 40

Life Cycle

Security requirements

Design

Implementation

1

3
2

4

Assurance
justification

Design and
implementation
refinement

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 41

Life Cycle

• Conception

• Manufacture

• Deployment

• Fielded Product Life

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 42

Conception

• Idea
– Decisions to pursue it

• Proof of concept
– See if idea has merit

• High-level requirements analysis
– What does “secure” mean for this concept?

– Is it possible for this concept to meet this meaning of
security?

– Is the organization willing to support the additional resources
required to make this concept meet this meaning of
security?

May 26, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 43

Manufacture

• Develop detailed plans for each group

involved

– May depend on use; internal product

requires no sales

• Implement the plans to create entity

– Includes decisions whether to proceed, for

example due to market need

